Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antiviral Res ; 214: 105605, 2023 06.
Article in English | MEDLINE | ID: covidwho-2293609

ABSTRACT

This study compared disease progression of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in three different models of golden hamsters: aged (≈60 weeks old) wild-type (WT), young (6 weeks old) WT, and adult (14-22 weeks old) hamsters expressing the human-angiotensin-converting enzyme 2 (hACE2) receptor. After intranasal (IN) exposure to the SARS-CoV-2 Washington isolate (WA01/2020), 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography with computed tomography (18F-FDG PET/CT) was used to monitor disease progression in near real time and animals were euthanized at pre-determined time points to directly compare imaging findings with other disease parameters associated with coronavirus disease 2019 (COVID-19). Consistent with histopathology, 18F-FDG-PET/CT demonstrated that aged WT hamsters exposed to 105 plaque forming units (PFU) developed more severe and protracted pneumonia than young WT hamsters exposed to the same (or lower) dose or hACE2 hamsters exposed to a uniformly lethal dose of virus. Specifically, aged WT hamsters presented with a severe interstitial pneumonia through 8 d post-exposure (PE), while pulmonary regeneration was observed in young WT hamsters at that time. hACE2 hamsters exposed to 100 or 10 PFU virus presented with a minimal to mild hemorrhagic pneumonia but succumbed to SARS-CoV-2-related meningoencephalitis by 6 d PE, suggesting that this model might allow assessment of SARS-CoV-2 infection on the central nervous system (CNS). Our group is the first to use (18F-FDG) PET/CT to differentiate respiratory disease severity ranging from mild to severe in three COVID-19 hamster models. The non-invasive, serial measure of disease progression provided by PET/CT makes it a valuable tool for animal model characterization.


Subject(s)
COVID-19 , Pneumonia , Humans , Animals , Cricetinae , COVID-19/diagnostic imaging , SARS-CoV-2 , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography/methods , Angiotensin-Converting Enzyme 2 , Positron-Emission Tomography , Mesocricetus , Disease Progression
2.
Sci Rep ; 11(1): 20595, 2021 10 18.
Article in English | MEDLINE | ID: covidwho-1475487

ABSTRACT

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Light , SARS-CoV-2 , Trachea/radiation effects , Virus Replication/radiation effects , Adult , Animals , Antiviral Agents/pharmacology , Bronchi , Calibration , Cell-Free System , Chlorocebus aethiops , Epithelium/pathology , Female , Humans , Respiratory Mucosa/radiation effects , Trachea/virology , Vero Cells
3.
Vaccine ; 39(38): 5410-5421, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1351060

ABSTRACT

Traditional bolus vaccine administration leads to rapid clearance of vaccine from lymphoid tissue. However, there is increasing evidence suggesting that the kinetics of antigen delivery can impact immune responses to vaccines, particularly when tailored to mimic natural infections. Here, we present the specific enhancements sustained release immunization confers to seasonal influenza vaccine, including the magnitude, durability, and breadth of humoral responses. To achieve sustained vaccine delivery kinetics, we have developed a microneedle array patch (MIMIX), with silk fibroin-formulated vaccine tips designed to embed in the dermis after a short application to the skin and release antigen over 1-2 weeks, mimicking the time course of a natural influenza infection. In a preclinical murine model, a single influenza vaccine administration via MIMIX led to faster seroconversion, response-equivalence to prime-boost bolus immunization, higher HAI titers against drifted influenza strains, and improved protective efficacy upon lethal influenza challenge when compared with intramuscular injection. These results highlight infection mimicry, achieved through sustained release silk microneedles, as a powerful approach to improve existing seasonal influenza vaccines, while also suggesting the broader potential of this platform technology to enable more efficacious next-generation vaccines and vaccine combinations.


Subject(s)
Influenza Vaccines , Influenza, Human , Animals , Humans , Immunogenicity, Vaccine , Influenza, Human/prevention & control , Mice , Needles , Silk
SELECTION OF CITATIONS
SEARCH DETAIL